

The T Trak End Cap project

9/10/23

After years of collecting equipment, but having limited track set up, I ran to an opportunity to change this and kick off running trains of my own. Ron Piro at NWV loaned me a club end cap with an expressed desire to see some cityscape on it. Some months ago, the NWV cleared off an N scale layout with several DPM city buildings, which I took home looking to use them somewhere, so I set to work on it. I'm not a lover of T Trak. Here are some things I see a lot and hoped to get away from.

- Everything flat to the same level.
- Unrealistic road configurations.

Taking a page from the Malcom Furlow playbook, I decided to expand vertically by raising the city and have the tracks form a corridor, similar to the Mass Pike Extension in Boston and other Massachusetts cities. This means building two small city blocks on either side of a main bridge road.

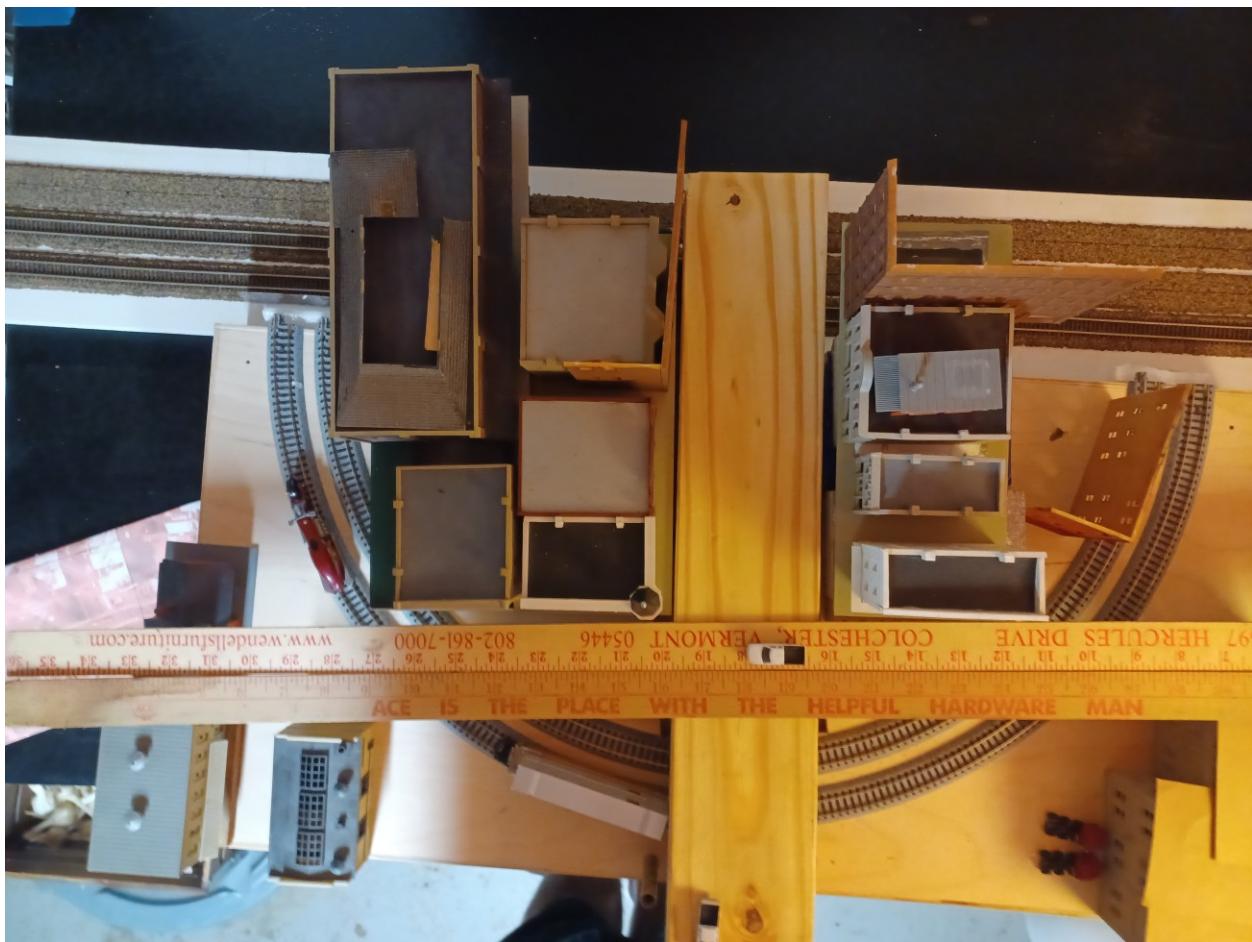
Here's my first attempt.

A few things to note.

1. **Symmetry.** I realize the road in the middle of the frame could easily swing either way, to make a different angle and add more interest. At the moment, I'm holding off from doing this for two main reasons. First, these odd angles would require the building to mirror them, and I am working with 90 degree corners here. The other reason is I want to have a view block from either side and give maximum track space to both sides. Having a main street running perpendicular to the front edge means a viewer can per down into the street, with a group of buildings facing another group of buildings. If I get sick of one, I can turn it around and work on the other.
2. **Depth.** The brown buildings in the back are likely hanging off the back, so they may be coming off, especially if the crossing street (the yardsticks) moves further back into the scene. Doing that would allow for another building on the right.

3. **Taller buildings in the back.** I do like the idea of taller buildings, however, and not just flats (see the one on the left). This could be a great place for photo backdrop.
4. **Bridge as focus and determiner for elevation of the city.** The 2x4 bridge road in foreground is one thing that needs to be replaced before I can attempt to run trains (or shuttle cars for testing). The double stack container car at left shows what I am working with. It seems likely the road surface can drop, maybe by five scale feet, or 1cm. That means the whole road system and maybe the whole downtown can come closer the tracks.
5. **View blocks on the corners?** These feel optional to me. The advantage is the viewer on the right side can move right to hide oncoming train (and seeing the ends of the cars). The curvature is tight. It's so tight, I can fit two autoracks on the inside track on either side (four total). The double stack cars offer slightly better angles since they are shorter, and of course, running 50 and 40 cars or shorter would be ideal here. Both view blocks are hanging off the edge right now, revealing the need to adjust things to fit better.

Here are some views of the corner pockets. I have this whole thing mounted on an armoire at eye level. This ensures I can **focus on details at track level**. Doing so keeps the city in the background for now. The left one is a set of freight houses than can accept cars, and looks like it could have come off the main.


On second thought, let's not crowd the boxcars on either side. A line of buildings looks better from this angle and opens up a little more foreground. However, a future support structure for the yardstick highway might ruin any chance at having a second building here.

One possible drawback is these view block buildings prevent a clear view of the track curving under the main bridge, at least from this angle. I do like the view of buildings at two different levels. Plus, the vast majority of trainwatchers aren't putting the track at eyelevel.

This view and the following confirms the yardstick road isn't going down the middle. Indeed, moving road into the center will ensure the city blocks can only have two buildings. The peaked roof building under the yardsticks must go.

Here's a view of the left foreground, turned into a parking lot. It shows that the bridge road can clearly come down slightly. While I do not want to make this road steep heading away from the buildings, in real life, the bridge builders would have lifted it due to pressure from the railroad in order to accommodate the ever taller freight cars, so a small rise is appropriate. The little cylinder to the right is something anyone with dogs will recognize. If I can find two more, I would have the supports needed from the main road. Let me note the motor cycle is there to keep train cars from running away and spilling to the floor. In this shot, the main road is a T intersection, with a small commercial building taking up this valuable real estate.

After a bit more work, the left pocket shows plate girder bridge to represent a crossing. Two buildings with ten windows total fills up the city block. The two boxcars would have been serviced by a switcher nowhere near the main. A small length of flex track mounted directly to the module top (no roadbed) would complete the scene. The overhang on this unnumbered six axle NS unit belies the tight curvature. Note the red building visible on the top of the archtop gray building at the rear of the module. This was a standalone shed, complete with an awning. It makes little sense, except it looks like it could be a much bigger building behind. The bigger windows provide some viewing interest.

What else is needed here?

1. A backdrop. In a big city, more and bigger buildings. They can be small, showing they are distant.

2. A curved retaining wall (or a series of flat sides) placed inside the inside track would fill up a lot of distracting negative space between the city and the trains. Many cities might have steep embankments here, but if we emulate the Boston model, this would have quickly graduated to retaining wall to encourage more building. This side is stone, and I like this look. Note the pillar wall between the electrified trackage and the right of way next to the roadway.
3. Ground cover. This can be asphalt heavy here. Keep the ghost track and maybe other evidence of past trackage.

4. Track for the box cars. That awning by the box car needs to be flattened to keep rain out of the car.
5. The roads need to be built, with supports, and placed on the module.
6. Telephone poles, streetlights, including traffic lights, signage, mailboxes, parking meters, fences.

Here is the end cap now:

The 2x4 shows some limitations. It's thick, but narrow as well. Reviewing an old photograph of Holyoke, this kind of road used to support two streetcars in the middle, and another lane and a half on each side.

The right pocket has a bit less going on. You can see the limitations of having autoracks on the inside track. That ugly car end and the overhang reveal how tight these curves are. The red building corner reveals a wish to have something like an arcane loading dock, perhaps as a substructure to a building to the right of the six window white corner building.

With a bit more work, we see the right pocket forming a bit more. The view block building is upside down, since it fits the scene better this way. The plate girder bridge reveals a means to have the road span the tracks. Clearly still needing a retaining wall behind those autoracks. The view block building can be thought of as facing a street. In this configuration, an access road would lead behind this building. In Boston, this foreground is I-90, and before that, additional trackage. Keeping the bridge supports at the extreme edge of the module would allow a ghost rail line turned road here.

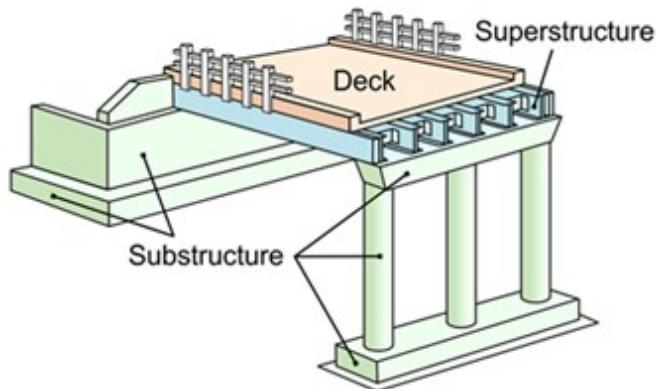
Two major changes today. First, I used a jigsaw to cut a half circle from foam insulation board. This is about a 19" diameter, but I may cut another one. Looking like a wedding cake now.

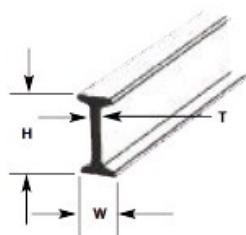
The next big improvement was to replace the two by four with a wider piece of cardboard. At last, train cars can pass under the main street, witnessed by a stack train meeting a CP ethanol train. The left block shrinks slightly, with a small storefront on the left. The darker gray building to the left of that is the back of a DPM building, and it's mounted almost two inches off the street. The right side of the block has some new pieces, a red four story piece, and a tree replacing the previous building, now reversed and shifted back behind the tree.

Now to the details. The plate girder bridges, the cars and trucks are back. In all likelihood, the plate girder bridges will not be used here. But, this represents a common practice of putting opaque fencing on bridges that cross rail lines to prevent distracted drivers which needs to be done here.

But take a look at the side views. This one on the left side would be end cap on the right side of a set up. Clearly some overhang exists, and these yardsticks are warped. The view block building does a nice job framing train in its curve. The single boxcar is not obstructing. Note the curved piece cut out of the foam leaning against the wall. However, whatever supports are used for the elevated highway will certainly obscure the train. The orientation of the pawn shop (with identifying sticker) shows it could a street front for another abutting module.

And now the right side, or extreme left end cap. The warehouse building is no longer upside down, but is half off the module. Now, examining Boston's SE corridor, or the Burgin Parkway in Quincy, Massachusetts, it's worth noting a corridor of this type would have been probably six tracks deep, maybe even more in places, and handled local and express trains as well as long and short distance freights. Therefore, removing the view block buildings, angling the support for the yardstick highway and filling the left and right pockets with a parkway would be very prototypical, expanding what the trailer truck is doing.


Maybe something like this. This works, but the road needs to be elevated, and with proper breakdown lane and space for median and staggered pillars. I think I like this.


This view of the Burgin Parkway at Water Street, Quincy shows 2 lanes in each direction in the parkway below, each about 13 feet wide, with a narrower breakdown lane. Water Street doesn't have much lighting. Quincy and Boston show the tracks are not limited to two. I think a third unpowered track on the outside of track 1 would complete the corridor. However, it may be a tight squeeze to get a third track and a proper support under the main bridge. The parkway will be confined to the corners.

In fact, a test with the third track comes right to the end, eliminating the support. The workaround is to have the bridge built rigid and weighted in the city block so it can hang over the tracks.

FINELINE STYRENE I-BEAMS

CODE	ACTUAL SIZE						
	'H'	'W'	'T'	LENGTH			
BFS-2	1/16"	1.6mm	1/32"	0.8mm	.015	0.4mm	10" 250mm
BFS-3	3/32"	2.4mm	3/64"	1.2mm	.020	0.5mm	10" 250mm
BFS-4	1/8"	3.2mm	1/16"	1.6mm	.025	0.6mm	15" 375mm
BFS-5	5/32"	4.0mm	5/64"	2.0mm	.030	0.8mm	15" 375mm
BFS-6	3/16"	4.8mm	3/32"	2.4mm	.035	0.9mm	24" 600mm
BFS-8	1/4"	6.4mm	1/8"	3.2mm	.035	0.9mm	24" 600mm
BFS-10	5/16"	7.9mm	5/32"	4.0mm	.045	1.1mm	24" 600mm
BFS-12	3/8"	9.5mm	3/16"	4.8mm	.045	1.1mm	15" 375mm
BFS-14	7/16"	11.1mm	7/32"	5.6mm	.055	1.4mm	15" 375mm
BFS-16	1/2"	12.7mm	1/4"	6.4mm	.060	1.5mm	15" 375mm
BFS-18	9/16"	14.3mm	9/32"	7.1mm	.060	1.5mm	15" 375mm
BFS-20	5/8"	15.9mm	5/16"	7.9mm	.060	1.5mm	15" 375mm

I see BFS-8, the 1/4" tall, or 40 scale inches tall. This should work.

1

9/11

A search for stone wall led me to a page. After some experimentation, fusing two images together and printing in black and white, I have the beginnings of a retaining wall. The pink below shows it needs a little more image, but I think the scale is appropriate.

